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SO(2,l) coherent-state Green function for the Klein-Gordon 
Coulomb problem 
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FundHo, C E P  21941, Rio de Janeiro, RI, Brazil 
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Abstract. We use the Perelomov SO(2, 1 )  coherent states to evaluate a Green function of 
a relativistic charged spinless particle in a Coulomb potential and determine its bound-state 
energy spectrum. 

1. Introduction 

The problem of a relativistic charged spinless particle in an external Coulomb field 
arises when we study, for example, the problem of a .rr-mesonic atom. 

The quantum mechanical description of this problem is given by the Klein-Gordon 
equation [I] ,  the solution of which describes the bound-state energy spectrum and 
transition rates. 

An elegant solution for this problem is the algebraic one, generated by the SO(2, l )  
dynamical symmetry of the problem. One possibility is to construct a Green function, 
in coordinate space, using differential operator realisation for the SO(2, l )  Lie algebra 
[2]. The use of dynamical symmetry algebras to find the spectrum or the Green 
functions is not new as may be seen from previous work [3] which treated different 
problems. 

In this paper we explore another possibility, that is to construct a Green function 
for this problem using the SO(2, 1) Lie algebra coherent states as defined by Perelomov 
[4], the exponential Schwinger representation [ 5 ]  for the resolvent operator and the 
Baker-Campbell-HausdoriT formulae [6]. This technique is similar to that of Gerry 
and Silverman [7], who construct Green functions over coherent states using path 
integrals. In our case we construct directly the Green function, suppressing path 
integral formulation, which is not necessary anyway. 

This paper is organised as follows. In § 2 we construct the Schwinger representation 
for the resolvent operator for a relativistic charged spinless particle in an external 
Coulomb field. In § 3 we review the basic aspects of SO(2, l )  Lie algebra, its coherent 
states and derive two Baker-Campbell-Hausdorff formulae which will be used in later 
sections. In § 4 we construct, explicitly, the Green function over SO(2, 1) coherent 
states and find the energy spectrum from its poles and in § 5 we present the conclusions. 

2. Statement of the problem 

The quantum mechanical motion of a free relativistic spinless particle of mass m can 
be described by a Green function G(x, x')  which satisfies the free Klein-Gordon 
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equation: 

( O + m ’ ) G ( x , ~ ’ ) = 6 ~ ( x - x ’ )  (1) 

where 0 is the d’Alembertian operator. When a particle of charge e moves in a region 
where there exists a Coulomb potential, V (  r )  = -Ze /  r, where Z is the atomic number, 
we must do a gauge-invariant substitution 

. a  a 
a t  a t  

1 -+ i -- eV(  r )  

modifying the free Klein-Gordon equation to ( C Y  = e’) 

[ - ( i + 5) ’ - V2 + m ’1 G ( x,  x ’) = 6 ‘( x - x ’) . 

Multiplying this equation by the radial coordinate r, one can write for G ( x ,  x ’ )  the 
Schwinger representation [ 51, in spherical polar coordinates as 

G ( x , x ‘ ) = i  joEdsexp{- i s r [ - ( iG+T)  a ZCY ’ 

where pr is the radial momentum 

pr = - i ( A )  
r ar  

and L the usual angular momentum operator. Making the Fourier transform 

G ( x ,  x’ )e - iE‘  dt  
+m 

G E ( x ,  x ’ )  = 

equation (3) becomes 

G E ( x , x ’ ) =  G E r s 3 ( x - x ’ )  

where the resolvent operator GE is given by 

GE = i lom ds  exp{ -is.[ -( E +:)’+p:+-+ L2 r2 m 2  I) 
which will be written, in following sections, in terms of SO(2, 1 )  generators. 

3. SO(2,l) Lie algebra 

We now introduce the operators [8] 

L2 - ZCY 

L2 - Za 
2 m  

(3) 

(4) 
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which satisfy the canonical commutation relations for the SO(2 , l )  Lie algebra 

[KO, K,1= iK2 (9a) 

[ K , ,  K2]=-iKo (96) 

[ K 2 ,  KO]  = iK, .  (9c) 

In the Df(k) infinite discrete representation of the SO(2 , l )  Lie algebra [8], the 
operator KO is diagonal for states Ik, n): 

K o I k  n ) =  ( k +  n ) l k  n) (10) 

and also the Casimir operator 

Clk,n)=(Kg-K:-K:)Ik, n) 

= k ( k - l ) l k , n )  

which in realisation (8) is 

c = I ( I + 1 ) - za 

where I( I + 1) is the eigenvalue of the L2 operator. Combining (1 1 )  and (12), we choose 
the Bargmann [9] index k as 

k = t+Ji+ I (  I +  1) - za. 

15, k )  = (1 -1512)k exp{5K+)lk, 0) 

(13) 

(14) 

The S O ( 2 , l )  coherent states, according to Perelomov [4] are given by 

or 

where K ,  is the ladder operator 

K+= Kl+iK2  (16) 
that creates the excited state Ik, n), from the fundamental state lk, 0): 

The overlap of two coherent states is given by 

( 5 ’ 9  ~15,~)=(1-1512)k( l - /5 ‘12)k( l -5 ’ *5 ) -2k  
while a completeness relation can be established as 

Another set of coherent states, that still obeys (18) and (19), called the physical 
coherent states, could be defined through a pseudo-rotation, generated by the non- 
compact operator K 2  : 

15) = exp{i%)I5, k )  (20) 
with an arbitrary angle 8, which will be conveniently chosen. 
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This transformation could be equally well applied to KO and K ,  operators, according 

(21a) 

(21b) 

= aKo+ bK, (22) 

to the BCH formulae [6] 

e-ieK2Ko eiRKI = KO cosh 6 + K ,  sinh 6 

, eisKz = KO sinh 6 + K ,  cosh 6 e - i B K Z ~  

so that a linear combination 

submitted to this transformation is 
di = e - i e K 2 i  eiSK, 

= KO( a cosh 6 + b sinh 6 )  + K , ( a  sinh 6 + b cosh 6 )  

which is proportional to KO when we choose: 

6 = l n  - 

leaving 

A =  cK, 

where 

c = [ ( a  - b ) (  a + b)]’’2. 

4. The Green function defined over physical coherent states 

Defining the Green function over physical coherent states are 

where the resolvent operator GE,  given by (7), could be written in terms of a linear 
combination i, (equation (22)) as 

G E  = i  [ox ds exp{-is(i-2EZa)} (28) 

where the coefficients a and b of A, are identified as 

E 2  
m m 

b=-  2m2- E’ 
a =  

so the Green function (27) becomes 

k J o  

where 

c = 2 J m 2 - ~ ’  
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according to (20) and (23)-(26). Using (lo),  (15) and (18) and making a Taylor 
expansion of the exponential of KO, one may write 

GE ( 5, 5’) = i I [om ds exp{ -is ( 2 k J  m - E - 2 EZa ) } 
k 

k 

(32) (1 - 1512)(1 - 15’12) 

which is the Green function for the Klein-Gordon Coulomb problem in SO(2, 1) 
coherent-state space. To find the spectrum of this system we must take the trace of 
the resolvent operator, using (19): 

= i I loa ds exp{-2is( k J m 2  - E 2  - EZa)}(2k - 1) lo’ dlrl 151 
k 

=iIj0 O5 ds e x p { - 2 i s ( k J m 2 - ~ ’ - ~ ~ a ) }  
k 1 -exp{-2isJm2- E ~ }  ’ 

(33) 

Expanding 

where we omit, for simplicity, a convenient convergence factor, we get 

Tr GE = -i I [2EZa - 2( k +  q ) J m 2  - E 2 ] - ’  
k q  

which has poles at 

E = m  [ I+- (kz“,’]-’’* 

(35) 

which fit the known spectrum [ 11 for a relativistic bound spinless particle in a Coulomb 
field. 

5. Conclusions 

In this paper we show the possibility of describing a relativistic system through 
generalised coherent states, constructing its Green function and finding the correspond- 
ing energy spectrum. 

This technique could be equally well applied to other systems with SO(2, 1) 
dynamical symmetry like the non-relativistic Coulomb potential, the three-dimensional 
harmonic oscillator and the Morse potential. 
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